Mostrando las entradas con la etiqueta quimiopercepcion. Mostrar todas las entradas
Mostrando las entradas con la etiqueta quimiopercepcion. Mostrar todas las entradas

jueves, febrero 21, 2008

Horrid Phenotypic integration!








Since past centuries naturalist, Cirripedes (or barnacles) have been studied because their peculiar morphology and life cycle. They live in a calcareous shell like a mollusk as adults, and they have articulated biramous appendages like crustaceans. Thanks to the study of its development, through nauplius larva, it was possible to classify them as crustaceans. Whereas, they have an incomplete abdomen, lacking terminal segments present in other crustaceans.

Fig 1: Cirripedes drawn by Haeckel in his beautiful bool Kunstformen der Natur 1904. A parasitized crab by Sacculina sp. can bee seen in the center of the picture.




One of the strangest groups of cirripedes are the Rhizocephalan barnacles which are sessile adult parasites of other crustaceans with free-swimming larvae (Fig 1 and 2). Their mature females (called externa) are situated in the abdominal brood chamber of the host, lack even the rudiments of an alimentary canal and have neither excretory nor respiratory organs. But it penetrates it's hosts with a nutrient-absorbing system of rootlets, which possibley links the parasite to these functions in the host (Fig 2 ).

Fig 2: Peltogaster (Peltogastridae) whole externa and root system attached to a part of the main abdominal root trunk From Bresciani & Hoeg 2001.
The life cycle (Fig 3) of the parasite involves a mature female externa which is fertilized by one or two cryptic dwarf males and which subsequently releases a series of broods of free swimming nauplii. The nauplii develop lecithotrophically, metamorphose into cypris larvae after about 5–6 days and become competent to settle after another 3–4 days in the plankton. Female cypris larvae must locate a suitable host while the male cypris larvae must find a parasitized host containing a virgin female. Some of the sensory structures involved in this behavior are the lattice organs and the aesthetasc setae found on antennules of the cyprids that have been proposed as olfactory organs. Females possess one and the males two. It had been demonstrated that larvae can use waterborne host metabolites to find a suitable host.


Fig 3: Generic life cycle of Cirripedian parasite, from Øksnebjerg 1999.


Female cyprids settle on the exoskeleton of a host crab at the base of a plumose seta and metamorphose into a special stage known as the kentrogon. The kentrogon penetrates the exoskeleton of the crab with a hollow stylet and injects the primordial parasite into the hemocoelic fluid. After an internal phase of a few months to 3 years, the parasite produces an external virginal reproductive body (externa) situated under the abdomen of the host. The externa attracts male cyprids, which implant as dwarf males and remain with the female externa for the duration of the latter’s lifetime and fertilize all its broods. Externa failing to receive at least one male cannot mature and eventually perish, leaving a scar on the host exoskeleton.





Fig 4: First photo shows the cyprid larva, antennae are marked with arrows, from Pasternak et al 2005. Second photo shows the kentrogon stage injecting cells in to the host body, from Hoeg 1987.

Sacculina carcini is a rhizocephalan parasite that attacks the crab C. maenas. S. carcini can have on their hosts severe and lasting effects on these include growth, morphology, physiology, and behavior of the host crab. The parasite can arrest the moult cycle of its host crab (which therefore suffers increased fouling). As a consequence of rootlet growth this parasite castrates both male and female hosts and phenotypically feminizes the males. Both sexes suffer alterations in behavior such as response to the externa and Sacculina eggs as their own brood. For example a common behavior of fecunded female crabs is to climb to some high rock and groom its abdomen to release the fertilized eggs from the brood pouch. Moving her claw the mother crab stir the water generating a flow. In the same way male parasitized by Sacculina will display a similiar behavior when the parasite offpring is ready to hatch, he will groom the Externa and release the next generation of his foster sons. “Sacculinized” host became an integrated developmental system that include the castrated crab, the breeding externa and the dwarf males. These creatures had been the focus of interesting cromosome and molecular studies that we can discuss in a next episode.

Fig 5: Rhizocephalan Extena on infected host species showing rootlets distribution in different parasite-host systems: A: Peltogaster paguri (Peltogastridae) on Pagurus bernhardus. B: Sacculina carcini (Sacculinidae) on Carcinus maenas. C: Sylon hippolytes (Clistosaccidae) on Spirontocaris lilljeborgi, from Bresciani & Hoeg 2001.



Cristian Villagra



References:

Bresciani J & Høeg JT (2001) Comparative Ultrastructure of the Root System in Rhizocephalan Barnacles (Crustacea: Cirripedia: Rhizocephala). Journal of Morphology, 249:9–42.

Herberts C (1982) Host-Parasite Relation between the Shore Crab Carcinus maenas and Sacculina carcini (Rhizocephala): Identification and Characterization of a Specific Fraction Correlated with Parasitism. Journal of Invertebrate Pathology, 39, 60-65.

Hoeg JT (1987) The relation between cypris ultrastructure and metamorphosis
in male and female Sacculina carcini (Crustacea, Cirripedia). Zoomorphology, 107:299-311.


Le Mouchel-Vielh E, Rigolot C, Gibert J-M & Deutsch JS (1998) Molecules and the Body Plan: The Hox Genesof Cirripedes (Crustacea). Molecular Phylogenetics and Evolution, 9,382–389.

Øksnebjerg B (1999) The Rhizocephala (Crustacea: Cirripedia) of the Mediterranean and black seas: taxonomy, biogeography and ecology. Israel Journal of Zoology, 46: 1-102.

Pasternak Z, Garm A & Høeg JT (2005) The morphology of the chemosensory aesthetasc-like setae used during settlement of cypris larvae in the parasitic barnacle Sacculina carcini (Cirripedia: Rhizocephala). Marine Biology, 146: 1005–1013.


Threshera RE, Wernerb M, Høegc JT, Svaned I, Glennerc H, Murphy NE, Wittwer C (2000) Developing the options for managing marine pests: specificity trials on the parasitic castrator, Sacculina carcini, against the European crab, Carcinus maenas, and relatedspecies. Journal of Experimental Marine Biology and Ecology, 254: 37–51


Strathmann RR (1993) Hypotheses on the Origins of Marine Larvae
. Annual Review of Ecology and Systematics, 24: 89-117. Walker G(1985) The cypris larvaea of sacculina carcini Thompson (Crustacea: Cirripedia: Rhizocephala) J. Eq. Mar. hoI. Ecof, 93:131-145.






domingo, abril 29, 2007

Una Historia de Sesgos Perceptuales y Parasitismo...


E aquí un interesante caso del establecimiento y mantención de relaciones interespecificas gracias a las propiedades dinámicas (en este caso sesgos percepuales) de los organismos (ver Saul-Gershenz & Millar 2006):

El “escarabajo de la ampolla” Meloe fransiscanus (Meloidae) parásita como larva los nidos de ciertas abejas y vive en ambientes desérticos de dunares y entre algunas gracias que hace el adulto es toxico y su mordedura genera hinchazones (Tamulinas & Reagor 1979), además presenta ciclos de vida hipermetamorficos (Fig 1), donde algunos estadios larvales pueden o no ocurrir dependiendo de los ambientes que encuentre el organismo en su ontogenia.


Figura 1: Ciclo de vida del escarabajo de la ampolla,
A = adulto, E = huevo, T = 1er estadio o triungulin, FG = 1ra fase de larva,C = fase coarctate en estadios 6 o 7, SG = segunda fase de larva, P = pupa

Las larvas de primer estadio (llamadas tringulines) son muy frágiles y de no encontrarse en un hábitat con abundante alimento y condiciones ambientales propicias mueren rápidamente. La hembra pone su huevo a la base de plantas que crecen en los dunares. Al eclosionar, los tringulines trepan por miles a las puntas de ramas debido a que presentan fototactismo positivo y evaden también el calor de la superficie del suelo. Al trepar en las plantas forman agregaciones de individuos como bolas (Fig 2), lo que se ha sugerido esta relacionado con la prevención de la desecación dada la aridez y dificultad de desplazamiento y disponibilidad de recursos alimenticios como nidos o polen en este ambiente desértico en que habita esta especie.


Figura 2: Masa de tringulines apelotonados y hambrientos..


En este punto la agregación podría considerarse fatalmente condenada a morir si no fuese por que tanto el tamaño como algunos compuestos que componen el olor de esta bola de tringulines atraen al macho de la abeja solitaria Habrodopa pallida (Figura 3) quien se aproxima a la bola confundiéndola por una hembra de su especie...


Figura 3: El incauto macho se aproxima a los tringulines atraido por su forma y perfume..

En este punto la desesperada masa de tringulines se aferran al macho que intenta copular con esta (Figura 4) y, de esta forma, son transportados de esta forma a la hembra de la abeja, a la que se trasladan cuando el macho copula con esta, luego solamente les falta esperar que la abeja regrese a su nido para alimentarse del polen colectado por ella y también del único huevo que depositará…



Figura 4: Foresis de los tringulines a expensas del macho de la abeja solitaria..


Se sabe que la forma de la bola de tringulines no es suficiente para que se establezca la conexión con el macho de la abeja y que el olor analizando los hidrocarbonos cuniculares de los tringulines se parece a algunos presentes en las abejas y que para confundir al macho es necesaria la concentración de estos similar a la emitida por una bola de tringulines agrupados...


Interesante Eh... Eh.. Eh?...



Diablete



Algunas Referencias:

Ray AC, Tamulinas SH, Reagor JC. 1979. High pressure liquid chromatographic determination of cantharidin, using a derivatization method in specimens from animals acutely poisoned by ingestion of blister beetles, Epicauta lemniscata. American Journal of Veterinary Research 40: 498-504.

Saul-Gershenz L S. & Millar J G. (2006) Phoretic nest parasites use sexual deception to obtain transport to their host's nest. PNAS, v 103,n 38, 14039–14044.