La falacia principal de nuestros tiempos es la idea de que la plasticidad fenotípica está genéticamente determinada o el oxymoron de los "genes de la plasticidad fenotípica".
Esta forma de pensar está perfectamete representada en la siguiente respuesta que me dio un colega ecofisiólogo en la internet:
"Say I have a population of lizards. I take half the population and move it North . Some decades later I return and do some comparative demography. I find that the Northern population grows more slowly, has a later age of first reproduction, smaller clutch sizes, maybe even larger eggs and hatchlings. Seemingly important life-history differences no? Different phenotypes.
Now I take representatives of both populations and run a common-garden experiment. Lo and behold, all those differences disappear--they were all due solely to phenotypic plasticity. Has evolution occurred in generating those differences? I (and I think most) would say no; I get the impression that you would say yes. The plasticity was already built into the original population's genome"
Según esta mentalidad, ningún fenotipo inducido epigenéticamnte sería jamás un nuevo fenotipo. Esto no hace ningún sentido estructural: cualquier sistema con estructura, sea o no sea vivo, puede deformarse producto de una interacción con el medio, generando un nuevo "fenotipo" sin que éste haya sido ensayado o preexistido de manera alguna. Los seres vivos son tan determinados en su estructura, como todo lo demás; difícilmente podrán escaparse a esta lógica.
Sin embargo, desde la perspectiva neodarwinista esto es una respuesta adaptativa que no es más que la expresión de una "maquinaria regulatoria", previamente ensayada y perfeccionada por la selección para producir una "respuesta adecuada" ante determinada variación ambiental. HE AHÍ cuando ocurrió la verdadera "evolución". En los ojos del darwinista, la evolución de esta maquinaria adaptativa habría ocurrido por un "típico" proceso de selección natural de rasgos heredables. Se trata de la seleccion de genes que regulan la plasticidad fenotípica. Instancias como la observada en el ejemplo de la lagartija no implican selección de genes y no tendrían ninguna relevancia evolutiva; son la mera expresión del estatus de los "genes de plasticidad" en la población original. Un caso como este, de modificación del fenotipo individual por el ambiente, no tiene relevancia evolutiva porque no es capaz de heredarlo a su progenie; depende del estímulo ambiental.
Los neodarwinistas "reformados", que intentan ser epigenéticos a la vez que se centran en los genes, consideran que en la asimilación genética, se favorecen los genes que logran desarrollar un rasgo con menor o ningún estímulo ambiental. Por ejemplo: Pigliucci considera que en el experimento de Waddington , se seleccionó un umbral más bajo de estímulo ambiental para el desarrollo del fenotipo crossveinless. Sin embargo, la idea de que sencillamente se seleccionan "genes de plasticidad" pierde de vista el hecho de que es necesaria la modificación ambiental del fenotipo individual. El hecho es que Waddington jamás seleccionó para la capacidad de desarrollar un fenotipo con menor o poco estímulo (aunque observemos esta capacidad en su población "final"). No es así. Waddington siempre ocupó el mismo estímulo ambiental, no lo fue "suavizando" Al comienzo del experimento de waddinton, NADIE es capaz de desarrollar el fenotipo sin el estímulo ambiental (De haber existido individuos así, daría lo mismo aplicar el estímulo ambiental al comienzo o al final: tiene que ser al principio). Waddinton simplemente eliminó durante generaciones a toda mosca que fallara en desarrollar el fenotipo crossveinless,ante siempre el mismo estímulo. Luego de algunas generaciones retiró el estímulo y vio que ya no era necesario; habían moscas que desarrollaban el fenotipo de todas formas (sin embargo, si ahora retiraba su guillotina selectiva, en pocas generaciones el rasgo vuelve a ser ambiente-dependiente)
No todas las moscas respondían al shock térmico. Una diferencia genética puede "decidir" si ocurre o no un cambio de fenotipo ante un determinado estímulo ambiental. Pero el hecho sigue siendo que sin el estímulo ambiental no hay cambio fenotípico. Los genes pueden ser necesarios, pero no suficientes. Hacen posible un fenotipo sin determinarlo (M&M). Hablar de"genes de plasticidad fenotípica" ignora la influencia estructural del cambio ambiental.
En términos de Sober, es posible decir que Pigliucci confundió "selection of" con "selection for". La independencia del estímulo ambiental (umbral=0) es la consecuencia tras algunas generaciones, pero no es lo directamente seleccionado: Waddinton sólo seleccionó un FENOTIPO).
Sin shock térmico, no hay variación alguna sobre la cual seleccionar; a esto se refieren los que dicen que el cambio ambiental "libera" variación genética oculta. Volvemos a la observación que han hecho Mary Jane, Kammerer, ganaderos y corraleros varios: no se puede seleccionar para mayor respuesta al ambiente, sin modificación ambiental del fenotipo individual. Una mejor vaca lechera sólo puede comprobarse mediante ordeñarla profusamente; una selección para pollos de mayor tamaño se acompaña de elevadas cantidades de alimentos (no se puede observar máximo crecimiento si el alimento está siendo limitante) .
Estos procesos de selección artificial, incluyendo el experimento de Waddington, tienen incorporados nada menos que un paso de modificación ambiental del fenotipo individual. Si la induccion ambiental de un fenotipo inicialmente NO HEREDABLE es un paso ineludible, incluso en una situación TAN amigable a la perspectiva darwinista como lo son los experimentos de selección artifical....con qué cara nos van a decir después que los cambios fenotípicos no heredables no tienen relevancia evolutiva?
-Alexander Vargas
Mostrando las entradas con la etiqueta herencia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta herencia. Mostrar todas las entradas
miércoles, abril 23, 2008
miércoles, abril 09, 2008
Deep-time dinosaur phyloepigenetics
West-Eberhardt repeatedly mentions in her book the case of the two-legged goat, born with no forelimbs, that learned to walk bipedally, and developed several hip traits, bipedal "adaptations". Certainly, to understand the development of these hip adaptations, we would be ill-advised to concentrate on the molecular mechanisms underlying cell-death in the embryonic forelimb, who have only indirect "causation", far removed from the actual mechanisms involved in the largely non-genetic influence on this trait. Comprehension can only come from observing the higher-level interactions and the direct developmental effects of emerging epigenetic interactions. It is interesting to think just how many aspects of our phenotype are, like this, only very indirectly related to the genotype (from a systems view, a mutation can be nothing but a "trigger").
I still remember when it dawned upon me in 2001; ALL vertebrate limbs, universally, grow longer with mechanical stimulation and use. I thought about early theropod dinosaur's reduced forelimbs. Even if bipedality were the result of some mutation enlarging legs or shortening arms (by the way: probably not, but behavioral), the arms would receive less mechanical stimulation when relieved from locomotion, whereas the legs now bear the entire body's weight. There is no way this is not going to decrease growth in the arm , increase it in the leg, and enhance forelimb-hindlimb size differences. Enter here the field of phyloepigenetics, which we previously named on this blog; the recopilation of cases of epigenetic explanation of evolutionary differences. This time I present a case of a deep-time epigenetic apomorphy: The fibular crest of the tibia of Theropod dinosaurs and their living representatives, the birds. Here are some photographs of this rectangular crest, that extends from the large tibia onto the thinner fibula (both elements of the "shank" or zeugopod). Since this is a trait of all theropods, the fibular crest must be at least 230 million years old.
Two different birds species illustrating the fibular crest of the tibia, upwards, rectangle-shaped (from Müller and Streicher 1989)


It turns out that this crest is a sesamoid bone, that is, a bone that develops within connective tissue as a result of mechanical stimulation; first cartilage is formed in the stimulated region; this cartilage may thereafter ossify originating the sesamoid bone (The chicken patella and human knee-caps are sesamoid bones that develop from within tendons). We can say that the sesamoid bones are to connective tissue what callosities are to epidermis. All of this with plenty of experimental confirmation, such as mechanical forces in abnormal places, etc.
The fibular crest of the chicken develops as a cartilage in the narrow space between the tibia and the fibula. In theropod evolution the fibula became thinner; this may be the reason why muscles that in other reptiles pull the leg backwards and project exclusively onto the fibula, in the chicken embryo also hit the connective tissue between the fibula and the tibia, provoking the development of a new sesamoid cartilage. This cartilage therafter ossifies into the crest, tightly connecting the tibia and the fibula in the adult. This crest in birds is certainly "adaptive" since it is fundamental to have a functional leg (because the fibula in birds no longer connects distally to the foot!) Yet against the adaptationist intuitions of old-style lamarckism, or of reformed "epigenetic darwinists", nothing in all those millions of years has produced a mechanism for developing this bone without movement. It still relies on the same "good old" mechanical stimulation. If the embryo is paralized , for instance, with a postsynaptic blocker, the cartilage of the fibular crest is no longer formed. The unavoidable effects of higher-level interactions have remained the basic mechanism by which this trait is developed .

"The de novo formation of skeletal elements addresses an important but largely neglected issue in evolutionary theory: the origination of morphological novelty. This generative problem of organismal evolution is sidestepped in traditional accounts that focus on the gradual variation and adaptation of characters and calculate their population genetic underpinnings. The studied characters are usually taken as given, and their origination is tacitly assumed to be based on the same mechanisms as their variation and adaptation. There is growing awareness that this does not need to be the case and that innovation should be treated as a distinct problem of
evolution"
Müller GB and Streicher J. 1989. Ontogeny of the syndesmosis tibiofibularis and the evolution of the bird hindlimb: a caenogenetic feature triggers phenotypic novelty. Anat Embryol. 179: 327-339
Müller GB. 2003. Embryonic motility: environmental influences and
evolutionary innovation. Evol & Dev 5:1, 56–60
The fibular crest of the chicken develops as a cartilage in the narrow space between the tibia and the fibula. In theropod evolution the fibula became thinner; this may be the reason why muscles that in other reptiles pull the leg backwards and project exclusively onto the fibula, in the chicken embryo also hit the connective tissue between the fibula and the tibia, provoking the development of a new sesamoid cartilage. This cartilage therafter ossifies into the crest, tightly connecting the tibia and the fibula in the adult. This crest in birds is certainly "adaptive" since it is fundamental to have a functional leg (because the fibula in birds no longer connects distally to the foot!) Yet against the adaptationist intuitions of old-style lamarckism, or of reformed "epigenetic darwinists", nothing in all those millions of years has produced a mechanism for developing this bone without movement. It still relies on the same "good old" mechanical stimulation. If the embryo is paralized , for instance, with a postsynaptic blocker, the cartilage of the fibular crest is no longer formed. The unavoidable effects of higher-level interactions have remained the basic mechanism by which this trait is developed .

From Müller 2003
The authors of the study share some wisdom with us:"The de novo formation of skeletal elements addresses an important but largely neglected issue in evolutionary theory: the origination of morphological novelty. This generative problem of organismal evolution is sidestepped in traditional accounts that focus on the gradual variation and adaptation of characters and calculate their population genetic underpinnings. The studied characters are usually taken as given, and their origination is tacitly assumed to be based on the same mechanisms as their variation and adaptation. There is growing awareness that this does not need to be the case and that innovation should be treated as a distinct problem of
evolution"
Müller GB and Streicher J. 1989. Ontogeny of the syndesmosis tibiofibularis and the evolution of the bird hindlimb: a caenogenetic feature triggers phenotypic novelty. Anat Embryol. 179: 327-339
Müller GB. 2003. Embryonic motility: environmental influences and
evolutionary innovation. Evol & Dev 5:1, 56–60
Etiquetas:
100% posts in ENGLISH,
adaptacion,
epigenesis,
evo-devo,
filoepigénesis,
herencia,
ontogenia,
paleontologia,
plasticidad,
sistemas
viernes, abril 04, 2008
Secuencialidad, ciclos de vida y la perspectiva sistémica de herencia
La observación crucial de la teoría de sistemas es que generalmente las propiedades de un sistema no son la suma aditiva de las propiedades de sus componentes. Al no ser una suma aditiva, no es conmutativa, es decir, la secuencia temporal en la que se encuentran una serie de componentes es determinante de resultados finales muy diferentes,
como lo revela la más simple receta de cocina. De esto entonces podemos deducir que las secuencia de eventos y de encuentros son cruciales para los sistemas biológicos, cosa que vemos manifiesta en su organizada estructura topológica que conduce y canaliza secuencias de eventos y de encuentros, tanto al interior del propio organismo, como con respecto a su medio. Es por esto que la perspectiva sistémica, al describir la deriva estructural en la ontogenia de un ser vivo, o bien la evolución de un linaje particular , connota este proceso como un proceso sistémico-histórico, una dinámica en la cual la secuencia de los eventos es fundamental (importante intuición histórica que Kaufman no logra desprender desde su rudimentario y fallido "reduccionismo de sistemas").

En efecto, la conservación de la autopoiesis, y la conservación de un fenotipo ontogénico, implica simpre la conservación de una secuencia particular de eventos. En este punto es interesante contrastar este enfoque de secuencialidad en el tiempo con dos explicaciones clásicas al fenómeno de la herencia. Una, muy actual, sólo es capaz de concebir a la herencia mediante la noción del templado, es decir la famosa molécula autoreplicante del DNA. Los cambios se conservan porque quedan en el templado. A algunos parece incluso que les cuesta imaginarse cualquier otro mecansimo confiable de repetición. La otra explicación , vieja e inmortal, es relegar la repetición del fenotipo a la acción de alguna entelequia que como si de algún agente externo se tratara "guía" el desarrollo como en la ejecución de un plan (Las metáforas de programa y de teleonomía son en esencia lo mismo que la entelequia ya que no entregan mecanismos).

Ambas visiones son erradas y adolecen del mismo problema: Pasan por alto la relevancia de la repetición cíclica de secuencias de eventos distribuidas en el tiempo. Queda olvidado el ciclo de vida, una secuencia de eventos clausurada, que genera condiciones conducentes a su propia repetición.
Un cambio introducido en algún punto del ciclo de vida puede no tener ninguna consecuencia inmediata. Los efectos pueden manifestarse mucho después, en el surgimiento de la interacción relevante. El ciclo de vida no se repite a sí mismo por medio de un mecanismo directo e inmediato de templado y copia, ni por el constante influjo de alguna guía enteléquica, sino que al tratarse de un proceso dinámico distribuido en el tiempo, una "causa" o cambio puede encontrarse distanciada en varios pasos de su efecto, y aún así participar de la repetición del ciclo como totalidad y la repetición de sí misma. Se trata de un mecanismo epigenético de herencia.

-Dr Sanders

Ambas visiones son erradas y adolecen del mismo problema: Pasan por alto la relevancia de la repetición cíclica de secuencias de eventos distribuidas en el tiempo. Queda olvidado el ciclo de vida, una secuencia de eventos clausurada, que genera condiciones conducentes a su propia repetición.
Un cambio introducido en algún punto del ciclo de vida puede no tener ninguna consecuencia inmediata. Los efectos pueden manifestarse mucho después, en el surgimiento de la interacción relevante. El ciclo de vida no se repite a sí mismo por medio de un mecanismo directo e inmediato de templado y copia, ni por el constante influjo de alguna guía enteléquica, sino que al tratarse de un proceso dinámico distribuido en el tiempo, una "causa" o cambio puede encontrarse distanciada en varios pasos de su efecto, y aún así participar de la repetición del ciclo como totalidad y la repetición de sí misma. Se trata de un mecanismo epigenético de herencia.
Es frecuente en animales comprobar la importancia para la conservación de un determinado ciclo de vida del lugar en donde se depositan los huevos y la interacción con el medio en ciertas "ventanas" temporales. En el caso del salmón, varias señales aprendidas en su infancia le llevan después a reconocer y regresar al río específico donde nació; por ejemplo, si se reubica drásticamente a un salmón, jamás va a optar por otro río, y muere sin reproducirse. Nótese sin embargo que para que ocurra la concatenación cíclica de una secuencia de eventos no se requiere en principio de la participación de un sistema nervioso. Acordemente, los ciclos son una forma de repetir eventos y fenotipos que es común a toda la biología, y no exclusiva a los organismos con sistema nervioso. Incluso a nivel de la fisiología celular, muy pocas moléculas son directamente autocatalíticas o templados de sí mismas, sino que son producidas como resultado de pertenecer a una red cíclicamente concatenada. La autopoiesis es claramente una propiedad distribuida en la célula, una relación recíproca entre dinámica molecular interna y membrana, que no puede ser descrita como una relación de templado y copia como en el caso de la secuencia de ADN.

-Dr Sanders
Etiquetas:
ecologia,
epigenesis,
herencia,
herencia epigenética,
nicho ontogénico,
sistemas
sábado, marzo 22, 2008
Whereupon Lewontin is criticized, and "Phyloepigenetics" is born
In "The triple helix" Lewontin seems to contradict himself a bit on the importance of genes. Consider this paragraph:
"Of course it is true that lions look different from lambs and chimps and humans because they have different genes, and a satisfactory explanation for the differences between lions, lambs, chimps and us need not involve other causal factors"
(Italics are mine)
Since Lewontin in his next breath talks quite a bit about the importance of environment and random noise in development, we are forced to wonder why they would not count as causal factors when it comes to explaining inter-species differences.
I suspect this is the result of a typically neodarwinian mistake born from the circular logic of their definition of evolution. Because "evolution is genetic change of populations", when observing a difference that is species-level (evolutionary) they get confused and think they can assume that difference to be the result of natural selection for genetic mutations (unless it is a very obviously a non-adaptive difference, in which case it is still genetic mutations, and drift rather than selection) . This argument in fact is repeatedly encountered in the discussion over whether human "intelligence genes" exist or not. "Evolutionary" psychologists (ultradarwinians) argue that the fact the human brain has evolved from smaller, less-smart brains like those of other apes implies natural selection for "intelligence genes" must have occurred in the human line, and thus that genes capable of increasing fitness through intelligence must indeed exist (The fact being that their effects are difficult to detect. Only using lots of data, statistical correlations for only very small increases in IQ scores is all that is ever detected for an alleged "intelligence gene)"
This argument, that seems so impeccable to those accustomed to thinking with a neodarwinian cap, can be exposed for the misleading definition-game it is when we stop to analize a few case-studies. The human trait of bipedism for instance. Below is the photograph of one of two "wolf girls", Amala and kamala, that were raised by wolves in India and then "rescued" into civilization in the 1920's. Extensive written and photographic documentation were produced by the priest who took care of them. As you can see in the photograph, the girls used quadrupedal, rather than bipedal, locomotion. The priest tried hard but made little progress training them into walking like people. They did not speak and and had obviously subnormal cognitive capacities for human standards .

You would think that genetic influences over general human anatomical structure would be sufficient to lead to bipedality. However, let us remember that in our ontogeny we do, in fact, learn to walk bipedally. This important difference between humans and other animals seems to not come about without an appropiate context, provided by interactions among humans, which are in fact required for preserving the behavior of bipedal walking .
Let's talk about symbolic language, another difference between hum
ans and other species. Beyond Amala and Kamala, it is clear from numerous documented cases of feral or cruel upbringing of children, that children deprived from human interaction will not learn to speak and will develop a severely subnormal intelligence. But perhaps more interesting is the reverse experiment, that is, not only is it possible that a human may not learn to speak despite of any "language genes", but also, it is a fact that non-human primates can learn sign language and use it to communicate, despite any lack of "language genes". In this case, an important part of that species difference has been phenocopied in the other species, once again, with the aid of an adequate environmental context.
So, there definitely is an epigenetic component to the explanation of cross-species differences. A purely genetic causation could never be a satisfactory explanation. We will find that, as we compare the terminal taxa of a phylogentic tree, we will be able to see nodes in which clearly different epigenetic conditions have become established and can be directly responsible for great phenotypic differences or epigenetic apomorphies ; the sublime confirmation of everything is, of course, the experimental phenocopy or reversal through alteration of the suspect epigenetic factor.
I can think of several confirmed examples from non-human organisms and simple phenotypic traits, as well as several epigenetic hypotheses that have never been discussed before as explanations of differences between species, perhaps for lack of a more formal approach. I thus propose we begin by calling this approach Phyloepigenetics.
The intention of this post is to start several posts where we will be studying and discussing probable cases of epigenetic differences at the species-level, and thus make ourselves with a litte more "cultural baggage" to defend this new approach. I invite everyone to share examples!! I will soon be posting one about ...dinosaurs! Phyloepigenetics can be paleo, too.
Reference:
Lewontin, R. 2000 The triple Helix: Gene, Organism and Environment. Harvard University Press.
"Of course it is true that lions look different from lambs and chimps and humans because they have different genes, and a satisfactory explanation for the differences between lions, lambs, chimps and us need not involve other causal factors"
(Italics are mine)
Since Lewontin in his next breath talks quite a bit about the importance of environment and random noise in development, we are forced to wonder why they would not count as causal factors when it comes to explaining inter-species differences.
I suspect this is the result of a typically neodarwinian mistake born from the circular logic of their definition of evolution. Because "evolution is genetic change of populations", when observing a difference that is species-level (evolutionary) they get confused and think they can assume that difference to be the result of natural selection for genetic mutations (unless it is a very obviously a non-adaptive difference, in which case it is still genetic mutations, and drift rather than selection) . This argument in fact is repeatedly encountered in the discussion over whether human "intelligence genes" exist or not. "Evolutionary" psychologists (ultradarwinians) argue that the fact the human brain has evolved from smaller, less-smart brains like those of other apes implies natural selection for "intelligence genes" must have occurred in the human line, and thus that genes capable of increasing fitness through intelligence must indeed exist (The fact being that their effects are difficult to detect. Only using lots of data, statistical correlations for only very small increases in IQ scores is all that is ever detected for an alleged "intelligence gene)"
This argument, that seems so impeccable to those accustomed to thinking with a neodarwinian cap, can be exposed for the misleading definition-game it is when we stop to analize a few case-studies. The human trait of bipedism for instance. Below is the photograph of one of two "wolf girls", Amala and kamala, that were raised by wolves in India and then "rescued" into civilization in the 1920's. Extensive written and photographic documentation were produced by the priest who took care of them. As you can see in the photograph, the girls used quadrupedal, rather than bipedal, locomotion. The priest tried hard but made little progress training them into walking like people. They did not speak and and had obviously subnormal cognitive capacities for human standards .

You would think that genetic influences over general human anatomical structure would be sufficient to lead to bipedality. However, let us remember that in our ontogeny we do, in fact, learn to walk bipedally. This important difference between humans and other animals seems to not come about without an appropiate context, provided by interactions among humans, which are in fact required for preserving the behavior of bipedal walking .
Let's talk about symbolic language, another difference between hum

So, there definitely is an epigenetic component to the explanation of cross-species differences. A purely genetic causation could never be a satisfactory explanation. We will find that, as we compare the terminal taxa of a phylogentic tree, we will be able to see nodes in which clearly different epigenetic conditions have become established and can be directly responsible for great phenotypic differences or epigenetic apomorphies ; the sublime confirmation of everything is, of course, the experimental phenocopy or reversal through alteration of the suspect epigenetic factor.
I can think of several confirmed examples from non-human organisms and simple phenotypic traits, as well as several epigenetic hypotheses that have never been discussed before as explanations of differences between species, perhaps for lack of a more formal approach. I thus propose we begin by calling this approach Phyloepigenetics.
The intention of this post is to start several posts where we will be studying and discussing probable cases of epigenetic differences at the species-level, and thus make ourselves with a litte more "cultural baggage" to defend this new approach. I invite everyone to share examples!! I will soon be posting one about ...dinosaurs! Phyloepigenetics can be paleo, too.
Reference:
Lewontin, R. 2000 The triple Helix: Gene, Organism and Environment. Harvard University Press.
miércoles, marzo 19, 2008
Herança: a re-produção sistêmica de um processo
A palavra herança tem dois sentidos principais: a) A herança social de patrimônios, títulos e direitos e (b) a herança biológica de característica, doenças etc. Historicamente, o emprego da palavra no primeiro sentido precede o segundo - a palavra herança surgiu para designar a manutenção e transmissão de bens entre famílias e, posteriormente, foi empregada metaforicamente para designar a recorrência de caracacterísticas biológicas - primeiro como adjetivo, em expressões como "doença hereditária", e depois como substantivo. No início do século XIX, médicos franceses passaram a empregar o substantivo heredité para designar uma classe de fenômenos biológicos: a reaparição de características entre gerações (para mais detalhes ver os trabalhos de Lopez-Beltran)
A grande consequência do surgimento do conceito de herança biológica foi tornar a forma dos seres vivos um fenômeno histórico. A forma de um organismo era consequência da forma do organismo anterior e, portanto, de uma história. Repare que isto é muito distinto das conceituações do século XVIII, onde a forma era algo transcedental, a manifestação de um tipo ou essência. Tanto para preformacionistas quanto epigenetista, a forma não era herdada. Ou ela preexistia ou era gerada de novo. Somente no fim do século XVIII, com percepção de que os tipos eram variáveis, de que haviam raças, de que havia regeneração, etc., foi possível que autores como Buffon e Lamarck discutissem a permanência histórica de degenerações e desvios do tipo.
Esta noção foi aprofundada no século XIX, quando a herança passou de um fenômeno secundário, resposável pela permanência de peculariedades como o albinismo e o lábio leporino, para a explicação central da forma. O que surgiu com o conceito de herança foi uma explicação histórica da forma e suas variações.
Evidentemente, a concepção de herança biológica abriu caminho para teorias transformacionistas que floresceram no século XIX . Não por acaso, Spencer e Darwin foram os primeiros autores a empregarem as palavras inglesas inheritance and heredity no sentido biológico. Mas a contribuição mais importante dos ingleses foi propor a existência de partículas hereditárias (as unidades fisiológicas de Spencer e as gêmulas de Darwin) para explicar a recorrência da forma. Este conceito poderoso - partículas capazes de transmitir a forma (de in-formar) - substituiu a noção fenomenológica original dos franceses. Para autores como Prosper Lucas, por exemplo, a herança era algo semelhante a uma força, um fenômeno quantitativo mensurável (para mais detalhes ver Jean Gayon).
Portanto, no fim do século XIX se intoduziu o conceito de material hereditário. Este se multiplicou e ganhou força como as micelas (Nägeli), os idioblastos (Hertwig), os pangenes (De Vries), os biósforos (Weissman), etc. E, embora poucas vezes se reconheça, a biologia do século XX herda e elabora esta noção. A teoria do gene pressupõe a existência de um material hereditário, de partículas capazes de determinar e transmitir a forma. Ela parte do pressuposto ontológico de que existe um material hereditário.

Esta noção foi mantida e aprofundada pela genética molecular clássica. A herança passou a ser a transmissão de intruções codificadas e o desenvolvimento a manifestação destas instruções. Herança e transmissão genética se tornaram tão entrelaçadas que hoje é difícil que alguém possa conceber a herança sem um material hereditário.


Contudo, no século XXI, não é apenas possível, mas urgente conceber a herança sem a noção de partículas hereditárias. Primeiro, porque a genética molecular pós-genômica nos mostra que os genes não contém representações ou instruções para forma. Eles são moldes utilizados pelo sistema para produção de outras macromoléculas, não portadores da forma. Segundo, porque a repetição de um processo não necessita de um programa ou instruções (vide o caso das sucessões ecológicas). Lembre-se que a herança inicialmente não era concebida como a transmissão de partículas. O fenômeno herança diz respeito ao aparecimento de similaridades entre gerações, não a transmissão de similaridades.


Contudo, no século XXI, não é apenas possível, mas urgente conceber a herança sem a noção de partículas hereditárias. Primeiro, porque a genética molecular pós-genômica nos mostra que os genes não contém representações ou instruções para forma. Eles são moldes utilizados pelo sistema para produção de outras macromoléculas, não portadores da forma. Segundo, porque a repetição de um processo não necessita de um programa ou instruções (vide o caso das sucessões ecológicas). Lembre-se que a herança inicialmente não era concebida como a transmissão de partículas. O fenômeno herança diz respeito ao aparecimento de similaridades entre gerações, não a transmissão de similaridades.
As similaridades hereditárias ocorrem porque um processo se repete. Porque componentes e relações semelhantes reocorrem. Porque um olho ou um pé é re-produzido conservando certa topologia estrutural. É muito mais sensato hoje abandonarmos o velho esqueminha weismanniano de transmissão de partículas hereditárias e abordarmos a herança como um fenômeno prroduzido pela conservação de uma dinâmica estrutural e condutual.

GAYON, J. From Measurement to Organization: A Philosophical Scheme for the History of the Concept of Heredity. In: BEURTON, P. J., FALK, R. e RHEINBERGER, H. J. (Ed.). The Concept of the Gene in Development and Evolution. Historical and Epistemological Perspectives. Cambridge: Cambridge University Press, 2000, p.69-90
LÓPEZ-BELTRAN, C. Forging heredity: from metaphor to cause, a reification story. Studies in History and Philosophy of Science Part C: Biological and Biomedical Sciences, v.25, n.2, p.211-35. 1994.
______. In the Cradle of Heredity; French Physicians and L'Hérédité Naturelle in the Early 19th Century. Journal of the History of Biology, v.37, n.1, p.39-72. 2004.
______. The Medical Origins of Heredity. In: MÜLLER-WILLE, S. e RHEINBERGER, H.-J. (Ed.). Heredity Produced: At the Crossroads of Biology, Politics, and Culture, 1500-1870. Cambridge: MIT Press, 2007
Suscribirse a:
Entradas (Atom)